Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171196, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38412874

ABSTRACT

Riparian wetlands have suffered from degradation due to global climate change and human activities, which can alter flora and fauna community patterns and disrupt material cycles in the riparian zones. Hydrological connectivity identified by functional and structural connectivity is an important driving force of riparian ecosystems. However, the role of hydrological connectivity in linking riparian hydrology and ecology remains unclear, especially in dryland rivers. By taking the riparian zone of the Xilin River in Eurasian steppe as an example, the functional connectivity was represented by the groundwater depth in the riparian zones. The structural connectivity was quantified by integrating the soil, and vegetation properties of the riparian zone. The structural connectivity decreased from upstream to downstream. Laterally, the highest structural connectivity was found in the riparian zone 25 m away from the river channel. The abundance of three groups of ground-dwelling arthropods (except Araneae) showed a threshold behavior in response to the functional connectivity, with the highest abundance occurring in the medium level of functional connectivity. Both vegetation biomass and ground-dwelling arthropod abundance were significantly and positively correlated to the structural connectivity strength. The results of structural equation models (SEMs) also indicated that structural connectivity was a key factor affecting vegetation and ground-dwelling arthropod abundance. The results underscore the essential function of hydrological connectivity in maintaining the biodiversity in the riparian zones. The study provides a scientific reference of riparian-zone restoration based on hydrological connectivity.


Subject(s)
Arthropods , Ecosystem , Animals , Humans , Hydrology , Grassland , Soil
2.
Sci Total Environ ; 883: 163732, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37116799

ABSTRACT

The hyporheic zone, i.e. the groundwater-surface water interface within riverine/riparian ecosystems, plays a key role in water transport, energy flow and biogeochemical cycling at watershed scales. Water and heat exchange are fundamental processes regulating biogeochemical cycles in the hyporheic zones. To improve the understanding of hyporheic flow and heat transport in meandering streams, high-resolution measurements of water level and temperature, combined with a 3-D coupled model of flow and heat transport in the hyporheic zone of a meandering bend, were carried out during a summer flood season. Results show the distinct spatio-temporal variations of hyporheic water and heat exchange. Flooding events (the incoming flood water generated by the upstream rainfall) and local rainstorm events (the storm or rainfall occurring over the local study area) are major drivers for the coupled processes. Incoming flooding from the upper stream increases the hyporheic water and heat exchange in the riverbed and inner bank leading to the longer intra-meander residence times, and warms the riverbed and riverbanks due to the post-rainfall thermal recovery. Local rainstorm event increases hyporheic water and heat exchange flux both laterally and vertically and cools down the riverbed and riverbanks. The water exchange and thermal regimes in the intra-meander seems more driven by the local exchange flows, while the counterparts in the outer bank are dominated by the regional groundwater flow. The temperatures in the inner banks are 1 to 3 °C higher than those in the outer banks, indicating the better hydrological connectivity between river water and groundwater in the intra-meander. The meander apex is a hot spot for hyporheic water and heat exchange. The results highlight the close coupling among river morphology, hyporheic flow, and thermal heterogeneity in a meander system.

SELECTION OF CITATIONS
SEARCH DETAIL
...